MARA BOS

| MGOING T0 TELL YOU

MUTUAL EXCLUSTON

L0CK
GMUTSOMETHING
UNLOCK

L0CK
GMUT SOMETHING
UNLOCK

IMPLEMENTENTING
[3 %RD

[HE OPERATING SYSTEM

PROVIDES THEM

8"
&

[INUX, MAC, OTHER UNTXES

WINDOWS

[INUX, MAC, OTHER UNTXES

pthread_mutex_t

WINDOWS

[INUX, MAC, OTHER UNTXES

pthread_mutex_t
(Part of the POSIX standard)

WINDOWS

[INUX, MAC, OTHER UNTXES

pthread_mutex_t
(Part of the POSIX standard)

WINDOWS

[INUX, MAC, OTHER UNTXES

pthread_mutex_t
(Part of the POSIX standard)

WINDOWS

Critical Sections

[INUX, MAC, OTHER UNTXES

pthread_mutex_t
(Part of the POSIX standard)

WINDOWS

Critical Sections
SRW Locks (Slim Read-Write Locks)

30, JUSTWRAP THEM?

struct Mutex(SystemMutex) ;

AND, DONE! 2

[HESE WERE DESTGNED

IN RUST, OBJECTS
CAN 8 MOVED

Remarks

An SRW lock must be initialized before it is used. The InitializeSRWLock function is

used to initialize a SRW lock dynamically. To initialize the structure statically, assign
the constant SRWLOCK_INIT to the structure variable.

An SRW lock cannot be moved or copied. The process must not modify the object,

and must instead treat it as logically opaque. Only use the SRW functions to
manage SRW locks.

50 WE PUT THEM ON THE HEA?

struct Mutex(Box<SystemMutex>):

INEFFICLENT
-

NO CONST CONSTRUCTOR
®

INRUST, WRONG USAGE

=
1

Mutex: :new()

a = m.lock();

b = m.lock();

unlock(b) ;

unlock(a) ;

m

Mutex: :new(

)

Mutex: :new(

m. Llock() ;

)3

let 123

let

let // deadlock!

let 123

let

let // deadlock!

DEADLOCKING

Mutex Type Robustness Relock Unlock When Not Owner

NORMAL non-robust deadlock undefined behavior

NORMAL robust deadlock error returned

ERRORCHECK either error returned error returned

RECURSIVE either recursive error returned
(see below)

DEFAULT non-robust undefined ndefingd behaviorT
behaviorT

DEFAULT robust undefined error returned
behaviorT

After a thread has ownership of a critical section, it can make additional calls to
EnterCriticalSection or TryEnterCriticalSection without blocking its execution. This
prevents a thread from deadlocking itself while waiting for a critical section that it

already owns. The thread enters the critical section each time EnterCriticalSection
and TryEnterCriticalSection succeed. A thread must call LeaveCriticalSection once
for each time that it entered the critical section.

let

let

let

drop

drop

123

// maybe no deadlock?

// undefined behaviour!

Mutex: :new(

m. lock();

)3

)

let 123

let

let // maybe no deadlock?

let 123

let

let // maybe no deadlock?

// undefined behaviour! °-

IN RUST, FORGETTING THINGS

let 123

let

// safe!

drop // dropped, but still locked!

Mutex: :new(

m.lock() ;

)3

m = Mutex: :new()

m.lock() ;

Q
[

mem: : forget(a) ;

let 123

let

// safe!

drop // dropped, but still locked!

DESCRIPTION

The pthread_mutex_destroy() function shall destroy the mutex object referenced by
mutex; the mutex object becomes, in effect, uninitialized. An implementation may

cause pthread_mutex_destroy() to set the object referenced by mutex to an invalid
value.

A destroyed mutex object can be reinitialized using pthread_mutex_init(); the
results of otherwise referencing the object after it has been destroyed are undefined.

It shall be safe to destroy an initialized mutex that is unlocked. Attempting to
destroy a locked mutex, or a mutex that another thread is attempting to lock, or a
mutex that is being used in a pthread cond timedwait() or pthread cond wait() call

by another thread, results in undefined behavior.

LONCLUSTON

FLTTING A L-SHAPED PEG
INTO A RUST-SHAPED HOLE.

imoar A

SEPTEMBER 201

® Q =

& Standard library, synchronization primitives, and undefined behavior

Ml libs

* alexcrichton O Sep 18

Hey all! The standard library provides a number of synchronization primitives for all Rust programs to
use in a cross-platform fashion. Ideally the standard library also provides sound implementations of
these primitives so they can'’t stop working at runtime!

Currently the system primitives Mutex, RwLock, Condvar, and ReentrantMutex (internal to libstd)
all wrap underlying primitives for each os (pthreads on non-Window, corresponding objects on
Windows). Unfortunately, though, using the OS primitives brings quite a few caveats:

¢ First off, once the primitive is used its memory address cannot be changed 59 . This requires our
safe wrappers to use Box to contain the primitives (as Rust values can change memory
addresses through moves).

PARKING LOT

MUTEXES ARE ONE BYTE

AND NOT REAP ALLOCATED
-

N 4

VERYTHING IS

CONST-CONSTRUCTIBLE
M

~ g

DEADLOCKING AND FORGETTING
il :’QEF)

[THIS THE SOLUTION
10 EVERYTHING!
B

created last reply 25 7 .3k 13 08 31
-‘-Sep '"18 -‘-Apr'19 replies views users likes links

Frequent Posters

DECEMBER 201

Use the parking_lot locking primitives #56410

9Nl 1=\l faern wants to merge 40 commits into rust-lang:master from faern:add-parking-lot (7]

() Conversation 1 -o- Commits 40 F) Checks 1 Files changed 64

faern commented on 1 Dec 2018 Contributor = () -

This PR adds the parking_lot code as a git submodule and reimplements all the standard library locking primitives so they
are thin wrappers over the parking_lot equivalents. The standard library public API is of course kept the same.

This has been discussed in https://internals.rust-lang.org/t/standard-library-synchronization-primitives-and-undefined-
behavior/8439/9

Thanks @Amanieu for mentoring when doing this, and basically all the code is his as well of course.

Fixes #35836
Fixes #53127

& 37 ¥ 3 ¥ 32

‘ Amanieu on 1 Dec 2018 Member © -

This is an internal APl which is only used in the internals of parking_lot_core . Regarding your question: | used
"should” here because you don't want 1o issue a system call while holding a lock, to keep leck durations short.

e" Reply...

Unresolve conversation faern marked this conversation as resolved.

src/libstd/sys_comwon/thread _parker.rs Qutdated

59 3

e

61 // Locks the parker to prevent the target thread from exiting. This is
62 // mecessary to ensure that thread-local ThreadData objects remain valid.

. Centril on 1Dec 2018 Contributor

Suggested change ()
- // necessary to ensure that thread-local ThreadData objects remain valid.
+ // necessary to ensure that thread-local ThreadData® objects remain valid.

‘ faern on 2 Dec 2018 Author | | Contributor
Fixed

£ o

Unresolve conversation Centril marked this conversation as resolved.

src/libstd/sys_common/thread _parker.rs = Qutdated

pub const IS_CMEAP_TO_CONSTRUCT: bool = true;

pub fn new(} -> ThreadParker {
ThreadParker {

+*
+
+*
+

' Centril on 1Dec 2018 Contributor

Unresolve conversation Centril marked this conversation as resolved.

src/libstd/sys_comwon/parking_lot_core/word_lock.rs Qutdated

#[cold]

#[inline(never)]

unsafe fn unlock_slow(&self) {
. Centril on 1Dec 2018 | Contributor

This is a lot of logic for an unsafe function and the invariants aren't stated;

It would be more readable to split it up into smaller chunks ime and also state the invariants required.

(Applies also to the function before this one).

Amanieu on 1 Dec 2018 Member @ -
In this case the invariants are pretty simple: don't lock if the current thread already owns the lock and don't
unlock if the current thread doesn’t own the lock.

. Centril on 1 Dec 2018 - edited + Contributor @ -
@Amanieu Sure; but it should be stated in the code explicitly. ;) and long unsafe fn s are more risky imo; if
you break it down a bit things can be reasoned about better.

‘ faernon 4 Dec 2018 Author Contributor @ -

| have now managed to make three methods in this type not fully unsafe . And the only unsafe one left states
why itis: unlock(} must not be called on an already unlocked WordLock .

& Reply...

Unresolve conversation faern marked this conversation as resolved.

src/libstd/sys_comwon/parking_lot_corefutil.rs Outdated

27 unreachable!(};

28 }else {

29 enun Void {}

3e match #(1 as sconst Void) {}

DECEMBER 201

tidy error: /build/rust/src/parking_lot/benchmark/src/rwlock.rs:15: platforn-specific cfg: cfglunix)
tidy error: /build/rust/src/parking_lot/benchmark/src/rwlock.rs:96: platforn-specific cfg: cfg(not(unix)}

Here is the work in progress state of what | change in parking_lot to make this work: https://github.comyfaern/parking_lot
jcompare/master.._faern:as-libstd-submodule?expand=1

As you can see, it's quite hacky and quite a lot of conditional compilation going on. One way to reduce it might be to make
libstd re-export itself under a module named std vy That way parking_lot canuse use std::whatever evenwhen it's
part of libstd.

One more still unsolved problem is the decumentation tests in parking_lot . They also have the wrong use statements
{ use parking_lot::Condvar is not a valid path when compiled inside libstd). But I'm not sure we could conditionally
compile that. And even if we could it would likely end up very ugly.

The way I'm bringing the code into libstd goes something like this at the moment:

2lpath = *../parking_lot/core/src/lib.rs")
2[allow(nissing_debug_iwmplementations, missing_docs, dead_code, unused_imports)]
wod parking_lot_core;

faern commented on 17 Dec 2018
Small update on last post: Adding

mod std {
pub use superiis;

}

10 libstd/lib.rs is a bit awkward, but it allows code inside libstd to use the same paths 1o everything as if they were not
inside libstd. This allows us 1o make way fewer changes to parking_lot itself. And possibly other crates we might want to
include in a similar manner. iy

alexcrichton commented on 18 Dec 2018 Member (D -+

One obvious thing is that the path to std types are different if it's being compiled as a normal crate or if it's actually
inside ibstd

FWIW stdsimd ran into the same issue, and local development uses a bit of a hack to get core -looking paths working
everywhere. | don't think this would work well in parking_lot though which is otherwise intended to compile on stable and
also be mere maintainable outside of std. The workaround you mentioned with pub use superz:= if it works is probably the
way to go.

Another problem is the tidy format check
Oh it's fine to ignore this submodule, the whitelist to ignore is here
As you can see, it's quite hacky and quite a lot of conditional compilation going on.

That part of the change | think is good to keep @Amanieu in the loop, as that's what'd ideally go upstream into
parking_lot itself!

One more still unsolved problem is the documentation tests in parking_lot

This is a bummer indeed! We have tons of pain with this in stdsind . The end goal | think is to skip all of parking_lot's tests,
including doctests, when included into the Rust repo. As to how to get there I'm not entirely certain...

FWIW | think all of these problems would be largely solved if parking_lot were a crate. | feel like that's still the best
solution here if we can stomach it.

Would it be possible for parking_lot to have a no_std mode that has internal wrappers for types that libstd otherwise
provides like Instant ?

Amanieu commented on 18 Dec 2018 Member (D) -+

As you can see, it's quite hacky and quite a lot of conditional compilation going on.

I don't think that shoehorning the existing parking_lot crate into compiling directly as part of libstd is a good idea. Unlike
stdsimd, which is explicitly designed to work as part of the standard library, parking_lot is intended to be used as a normal
crate. This is particularly noticeable when you look at stdsimd: there is a stability attribute on every function.

Would it be possible for parking_lot to have a no_std mode that has internal wrappers for types that libstd otherwise
provides like Instant?

It's not just Instant , parking_lot also depends on thread_local! and thread::yield . We could just copy these types
and functions into parking_lot, but then we're creating more maintenance problems than we are solving.

| personally feel that hashbrown (¥56241) is better candidate for making lbstd depend on an external crate, but even then,
there are several obstacles to overcome (in particular AP stability and stability attributes).

alexcrichton commented on 18 Dec 2018 Member (@ -+

Oh so in terms of stability stdsimd is an odd-one-out. | think we'll want to always implement and document the stable
interface in this repository, so even if we pull in implementation details from elsewhere we'll want the actual stable shims to
be in this repository itself (aka MashMap would be a thin wrapper around hashbrown hash maps). With stdsimd it's an "odd

ANUARY 0]

albatross they have to continuously re-extract.

* "re-facading”

o | wrote () Refactor std to improve ease of porting rust-lang-nursery/portability-wg#1 (comment) with 3
independent tracks of library work.

o People were wary of even temporarily making the alloc and std collections not unify, so 1 opened | RFC:
Existential types with external definition rfcs2492 to add a language feature to allow moving collections (and
other things referring to global/singletons) into upstream creates without that compromise.

o @glandium and | have some PRs for allec to add allocator parameters (closed due to being blocked on LLVM min
version issues and lib team bandwidth). This isn't strictly speaking re-facading, but | bring it up since hashbrown is
the best candidate to stay out of tree, and I've long wanted all of the collections to also live out of tree since they
many are so close to being stable code. (Unstable features that just gate an unstable API don't count!)

So | think the next steps are shepherding that RFC, rebooting the core:zio stuff (which thankfully isn't blocked on any
language change!), and the allocator stuff once LLVM is out of the way (or we figure out how to make some unstable
feature whose existence is gated on the LLVM provided).

v:2

RalfJung commented on 12 Jan 2019 - edited ~ Member (D -+

So, what is the current status of this? @alexcrichton, @faern, @Amanieu is there a path forward without being blocked on
the big refactorings mentioned by @Ericson2314?

| have to admit | feel a bit overwhelmed reviewing this PR. | can certainly lend my expertise in concurrent algorithms, and
review the "high-level bits", like how to implement locks and condvars and whatnot in terms of the low-level "parking”
mechanism. But | know very little about futexes or the other low-level platform-specific primitives that form the foundation
of this PR, and | do not feel confident enough to r+ the entire PR on my own. Anyone up for sharing this PR, preferably
someone with expertise to review the part below the "parking" abstraction?

EDIT: Ah | see others have already raised similar concerns, thank you :)

Ericson2314 commented on 12 Jan 2019 Contributor = (@) -+

To be clear | don't mean to propose blocking anything, just making the process of including something like 8 hashbrown of
parking_lot easier in the future.

faern commented on 14 Jan 2019 Contributor | Author | () -+

I have not had the time to work on this for quite some time now. | also feel it's kind of blocked on deciding how to get the
code into libstd. My interpretation is that different people want different solutions. The options we have discussed are:

1. Copy the code into this repository. This is what this PR does right now. But it's not fully done yet as | paused while
alternatives were discussed. Has the downside that we create a lot of duplicated code to maintain.

2.Include parking_lot as & git submodule. | experimented with this. This looks doable, but requires some hacks to be
merged into parking_lot . My understanding was that @Amanieu was not too happy about them.

3. Make parking_lot into #[no_std) and make libstd depend on it from crates.io. Seems almost impossible.
parking_lot really needs some types from the standard library, for example Instant .

alexcrichton commented on 14 Jan 2019 Member () .-+

@faern's comment is what | believe the current status to be, and we can poll other @rust-lang/libs folks if they have
opinions on this as well.

I personally feel that we really want to avoid duplication here. | think there's also some policy-ish issues to work through in
terms of reviewing code. In any case | think reviewing this is certainly much broader than "this technically looks good as is".

KodrAus commented on 14 Jan 2019 Member () .-

Over the longer term, what do we expect the relationship between std and parking_lot 1o be? Do we expect more of
parking_lot to make its way into std in a publicly visible way (effectively deprecating the external crate) or do we always
expect there to be a case for using parking_lot as an external library?

alexcrichton commented on 15 Member () .-+

I suspect that we'll forever want to be more conservative in the exposed surface area of libstd than in the crates.io crate.
The crates.io crate can be far more ambitious and having breaking changes whereas libstd basically can't. | do suspect,
though, that we’ll want to grow the APIs of the types in std::sync if we move over to parking_lot and everything goes
well, there's likely some very useful functionality to expose that we just can't right now (const initialization might be one...)

Relationship-wise we currently have a pretty high degree of review of any code going into kbstd in this repository. We don't
do a great job, however, for submodules. Submadules like libe/stdsimd aren't teo high-risk because their APIs are defined
by someone else and the implementations are pretty rigorously tested too. Submodules like compiler-rt, however, probably
receive far less review on implementation than they should. I'd be a little worried that we'd be expanding this to the
synchronization system in libstd, which seems ke it's naturally full of tricky code that would benefit from a higher-than-
average level of scrutiny. This is something I'm not entirely sure how we'd solve just yet.

w1

This comment has been hidden.

faern commented on 14 Feb 2019 Contributor Author = (D) ==+

I now pushed a first version of this. A PR on parking_lot to make it work as a git submodule exists over at
Amanieyparking_lot¥119.

Currently my change to sync/rwlock.rs triggers a compiler ICE, so | got a bit stuck.

This comment has been hidden.

faern commented on 14 Feb 2019
The ICE is now visible in the build failure log from highfive:

[00:07:18] error: internal coapiler error: src/librustc/hir/def.rs:257: attespted .def_id(} on invalid def: Non}
[@9:87:18) thread ‘rustc' panicked at ‘SBox<Any>', src/librustc_errors/lib.rs:588:9

The error looks quite similar to #57889, but | can't tell if it's the same or not.

‘ © faern reviewed on 14 Feb 2019

«gitmodules

. Centril commented on 14 Feb 2019 - edited ~

May also be due to #58110. Similar to #58253.

cc @oli-obk

. faern commented on 14 Feb 2019 Contributor | | Author
I got around the ICE. Removing the now invalid self.inner.destroy() calls from the Rslock fixed it. Moving on...
faern commented on 15 Feb 2019 @ -
I'm stuck in ICEs again 3/
Maybe someone is able to help me sort it out. The same error is printed as last time. But obviously not from the same code.
The commit that starts producing the ICE is this one where | try to implement the Mutex with the parking_lot primitives:

faern@ 6f5437f

This comment has been hidden.

oli-obk commented on 15 Feb 2018 Member (O -+

So the only thing | noticed with this ICE is that it occurs whenever | should have gotten a resolve error. Mostly typos or
accessing methods that don't exist.

oli-obk commented on 15 Feb 2019 Member (D -+

One way that could help you is to build stage 0 on the last working commit. Then readd the new commits and run . /x.py
test ——keep-stage 8 —stage 1, since the ICE is fixed on master, stagel won't have it.

v

This comment has been hidden.

G @ taern force-pushed the faern:ads-garking-lat branch from 8fc6eeb to Sadéaza on 18 Feb 2019

This comment has been hidden.

G @ teern force-pushed the faern:add-parking-lat branch from Sadea2a to Bedadfs on 21 Feb 2019

‘ faern commented on 21 Feb 2019 - edited ~

Now | got a let further. Thanks @oli-obk for the ICE fix and workaround.

src/libstd/io/stdio.rs

498 + z[stable(feature = “rustl”, since = “1.8.9"))
499 + impl UnwindSafe for Stdout {}

588 + 2[stable(feature = “rustl”, since = “1.8.0")]
581 -+ impl RefUnwindSafe for Stdout {}

‘ faernon 4 Mar 2019 Author Contributar @ -

| had to manually implement these traits, since that was being done for us via the old

sys_comwon: :ReentrantMutex . The parking_lot::ReentrantMutex does not make things automatically
UnwindSafe .

° pitdicker on &4 Mar 2019 - edited + Contributor @ -
This does not change the current behavior, as the stdio code just ignored the poisoning of ReentrantMutex .
' pitdicker on 4 Mar 2019 Contributor Q -

It a panic happens in StdoutLock::write (or flush)it can keep de RefCell borrow count at 1. After a
catch_unwind it can then be observed, causing the next use of Stdout to panic. Not sure if that is a problem.

& Reply...

Unresolve conversation faern marked this conversation as resolved.

o This comment has been hidden.

(9 ‘ retep998 added the relnotes label on 4 Mar 2019
© .c«mnl added (@EIEEEEY Torelease labels on 5 Mar 2019

¢z . faern mentioned this pull request on 5 Mar 2019
Simplify io::Lazy #58768

© [Mark-Simulacrum removed (Rlnay) T-release labels on 6 Mar 2019
This comment has been hidden.
This comment has been hidden.

(e . faern mentioned this pull request on 18 Mar 2019

Add SGX thread parker Amanieu/parking_lot#123
G ‘ faern force-pushed the faern:add-garking-let branch from d6e37bf to 1727169 on 22 Mar 2019

@ raern mentioned this pull request on 22 Mar 2019
Add wasm thread parker Amanieu/parking_lot#124

faern commented on 22 Mar 2019 - edited ~ Contributor . Author = (D) +++

The current status is that we need ThreadParker implementations in parking lot for the platferms that currently has
something smarter than just a spin lock in std::sys . Otherwise they will fall back to a spin lock implementation in
parking_lot . And that would likely not be a desires regression for any platform.

These are the missing platforms | have identified:

SGX - Just got merged {1~ Add SGX thread parker Amanieujparking_lot#r123)

Redox - I+ Add Redox thread parker Amanieu/parking_lot#125. Ping @jackpot51, you seem to have contributed a lot
of the current locking primitives. Maybe you are interested in following this thread, andjer help?

Cloudabi - }+ Add CloudABI thread parker Amanieu/parking_lot#126

Wasm (only when atomic support is enabled) - I'm still not sure if we need this one or not. But the implementation
seemed fairly trivial. So | have started that over at I~ Add wasm thread parker Amanieu/parking_lot#124

w3

‘ This comment has been hidden.

. This comment has been hidden.

2 25 matprec mentioned this pull request on 26 Mar 2019
Implement demo subscriber matprec/demo-subscriber#1

APRIL 201

o

o

2 Trying commit e388de? with merge 1802bb3 ...

(2 bors added a commit that referenced this pull request on 8 Apr 2019

. Auto merge of 256418 - faern:add-parking-lot, r=<try> —

bors commented on 9 Apr 2019

W Try build successful - checks-travis
Build commit: 1802bb%

Centril commented on 9 Apr 2019

@craterbot run mode=build-and-test

v 7

craterbot commented on 9 Apr 2019

. Experiment pr-56410 created and queued.
@ Automatically detected try build 10826b9
4 You can check out the queue and this experiment's details.

. Crater is a tool to run experiments across parts of the Rust ecosystem. Learn more

© 7§ craterbot added S-walting-on-crater and removed S-waiting-on-review labels on 9 Apr 2019

craterbot commented on 9 Apr 2018

24 Experiment pr-56410 is now running on agent aws-3-tmp .

. Crater is a tool to run experiments across parts of the Rust ecosystem. Learn more

craterbot commented on 11 Apr 2019

A Experiment pr-56410 is completed!
ul 18 regressed and 9 fixed (50551 total)
& Open the full report.

A If you notice any spurious failure please add them to the blacklist!
. Crater is a tool to run experiments across parts of the Rust ecosystem. Learn more

© 3 craterbot added S.waiting-on-review and removed S.waiting-on-crater labels on 11 Apr 2018

faern commented on 11 Apr 2019 - edited ~

This is an early analysis of the crater results.

Possible regressions

These crates behave the same locally as on crater. So might actually be regressions. Will dig into the details of these later.

* blocking_object_pool-9.1.9
* delay-queue-9.2.8 - EDIT: Was a bug in parking_lot . Being fixed here: }- Fix was_last_thread value in the timeout
callback of park() Amanieu/parking_lot¥129

Spurious failures - Nondeterministic failures

These crates fail randomly on stable and nightly Rust for me. Should likely be blacklisted on crater.

atlas-coverage-core-8.1.9

chef_api-8.2.8

ci_info-0.2.1

fromheten.plato. Sbéccd8faddeb224=bE32dd3ad2353024abfal46

Spurious failures(?) - Misc

* doryen-rs-2.1.0 - The error on crater is about the linker not being able to allocate memory. So likely spurious?

* fibers_rpc-9.2.17 - Not able to make it fail locally. The error on crater seems to be about network disconnects, so
spurious?

* kiteconnect-9.2.4 - Not able to make it fail locally. The error on crater seems to be about network disconnects, so
spurious?

* poston-8.3.1 - Not able to make the test failing on crater fail locally. Another test fails, but that one consistently fails
on stable as well. The test failing on crater seems to be connectionftimeout based, so spurious?

* mattforni.touch.elcd1176da5755eb366acd05ae3dfclc3cd3f655 - Not able to make it fail locally. The failing test is about

MAY 01

Are there places where it was not possible?
Make Mutex, Condvar, RwLock and Once basically just thin wrappers over their parking_lot equivalents.

What about park and unpark in libstd? Seems a little funny to depend on parking_lot of all crates and then still hand-
rell a parking mechanism here -- even more so since that is implemented on top of Condvar, which is now implemented on
top of parking. ;)

w1

faern commented on 5 May 2019

Are there places where it was not possible?
I'm not able to find any at the moment. So the answer seems to be: No.

What about park and unpark in lbstd? Seems a little funny to depend on parking_lot of all crates and then still
hand-roll a parking mechanism here -- even more so since that is implemented on top of Condvar, which is now
implemented on top of parking. ;)

I have not even given it a thought actually. The initial scope of what | intended to do here was just the first bullet in my list

{fix the synchronization primitives). The rest just came along nicely in the process. So if we feature creep this even more
and re-write park + unpark we would need another crater run. | feel this could be left for a separate PR?

RalfJung commented on 5 May 2019

| feel this could be left for a separate PR?

Sounds goed.

faern commented on 5 May 2018 Contributor Author = (@) ==+

@RaltJung You nerd sniped me into implementing this now. Looks like it can be done quite easy. However, | do not trust
myself to write this type of code at this hour. So | will let tests run over night and then I'll think it over again when | find
time.

However, it's up to the libs team to decide if they think this would justify another crater run. If they do we might want to
hold off pushing it here anyway, in order to not delay this PR even further.

mark-i-m commented on & May 2019 Member (D -+

Is there any benefit to doing it in this PR? My understanding is that it is already quite large to review and the parkjunpark
issue can be fixed independently.

- 2

alexcrichton commented on 6 May 2019 Member (@) -+

1 do not personally mind one way or another whether parkjunpark is changed in this PR. After landing this there's quite a
few follow-ups we'll want to do like enhancing the APIs of the various types, making methods const , moving away from
Rawutex where possible in libstd, ete, etc.

Reviewing this PR is quite trivial, and | suspect that even if changes were made to park/unpark it would still be quite trivial
10 review. The real meat is in parking_lot to review as it's basically an entire crate.

Basically @faern it's up to you whether you'd like to include the changes here.
In terms of review, | will attempt to set aside this Friday (2019-05-10) for reviewing the parking_lot crate.

w3

Amanieu commented on 6 May 2019

@alexcrichton Feel free 1o ping me on IRC/discord if you have any questions during the review.

lucab commented on 7 May 2019 Contributor = (@) +-+

I am interested in having the additional RwLock traits from lock _api (in particular, RewRwLockTimed and RawRwLockFair)
in stdlib, but | think that this PR is not exposing them.

Is that work supposed to happen in a different RFC/PR, and if so is that tracked somewhere already?

faern commented on 7 May 2019 Contributor | Author | () -+

Is that work supposed to happen in a different RFC/PR, and if so is that tracked somewhere already?

faern commented on 15 Jul 2019 Contributor | Author | (@) «-+

@faern Is there any chance this PR will land into Rust 1.38?

Quite unlikely. It's currently blocked on a lot of work being done inside parking lot . See the review feedback from Alex
further up.
dnrusakov commented on 16 Jul 2019 - edited ~
@faern Is there any chance this PR will land into Rust 1.387
Quite unlikely. It's currently blocked on a lot of work being done inside parking_lot . See the review feedback from

Alex further up.

@faern, thanks!
What ticket/tickets | could subscribe to to track the progress around this parking lot initiative? | see there is
faern/parking_loti], but the conversation there stopped more than a menth ago. Are there any other tickets to track?

faern commented on 16 Jul 2019 Contributor Author = (D) -+
What ticket/tickets | could subscribe to to track the progress around this parking lot initiative? | see there is
faem/parking_lot#1, but the conversation there stopped more than a month ago. Are there any other tickets to track?
That is basically the entire review of parking_lot and discussion around what we need to fix. Some of those things have
been addressed by separate PRs and those PRs should be linked from the “review PR". But no, nothing has happened for
over a month. | fixed some low hanging issues. The current large blecker is probably that parking_lot needs a lot of
doecumentation to explain how it works and why certain unsafe functions are actually safe etc.

- jonas-schievink mentioned this pull request on 29 Jul 2019
Panic broken on Windows XP #34538

‘ KronicDeth commented on 30 Jul 2019 - edited ~

Will using parking_lot break any compatibility with wasn32-unknown-unknown ? Due to parking_lot 's use of
Instant:znom|) , it doesn't work for wasn32-unknown—unknown :

panicked at 'Tinme system call is not implenented by WebAssenbly host®, src/libstd/sys/wasn/mod.rs:292:13
Stack:

Error
at Module. wbg_new_59cb74e423758ede (webpack:///../pkg/spawn_chain.js?:181:26)
. . . at __wbg_new 59cb74ed23758ede (http://localhost:8880/bootstrap.js:65:182)
at console_error_panic_hook::hook::h8df71£3722ab18fc (wasm-function[194):292)
at core:zops::function::Fn:icall::h42e98a3c@26ddfeb (wasr—function[776]:3)
at std::panicking::rust_panic_with_hook::h3f94f83752aa222% (wasm—function[214):265)
at std::panicking::begin_panic::hGbeecd7bct7d7532 (wasm-function(613):49)
at std:isys:iwasmizTineSysCall::perforn::h27f1627f17fac1d9 (wasr—function[721]):13)
at std:isys:iwasmiztime::Instant::now::h34de@2a8cdaad?a2 (wasn-function[770):3)
at std::time::Instant:inow::h7@dd8c3feecade2? (wasm-function[791):1)
at parking_lot_core::parking_lot::HashTable::new::h138323e9853035d8 (wasa-function[208]:53)

I know about the wasn_syscall flag, but without rebuilding with xargo | can't enable that, so I'm worried that using
parking_lot could make the primitives incompatible with wasn32-unknown-unknoun . Also @alexcrichton seemed to imply
that wasn_syscall was hightly-experimental and | got the impression that we shouldn't depend on it to make
Instant:znow{} work with rust-wasm.
Edit:
Openad Amanieu/parking_lot#166 too.
L

(2 ~=» SimonSapin mentioned this pull request on 19 Oct 2019
standard lazy types rust-lang/rfcs#2788

(2 T Thomasdezeeuw mentioned this pull request on 29 Oct 2019

Windows cleanup tokio-rs/mio#1112

. cormacrelf commented on 1 Nov 2019 Q@ -
@KronicDeth | made a PR for some single-threaded RawMutex/RawRwLock implementations that hopefully avoid the entire

parking & timers subsystems altogether. Needs heavy review. Amanieu/parking_lot187

¢ . Centril mentioned this pull request on 4 Nov 2018
Target tier policy rust-lang/rfcs#2803

(2 @ taern mentioned this pull request on 16 Nov 2019

WHAT'S GOING ON?

[T’ AHUGE AMOUNT OF
NEW (ODE

new to std)

FUTEX()!

UNDOCUMENTED WINDOWS APL?

YTABILITY GUARANTEES

100 MANY THINGS T0
DISCUS) ATONCE

ANUARY 020
EBRUARY 200

further up in this thread (¥56410 (comment)). Everything in that review has to be fixed first, then maybe this can proceed.

w1

Dylan-DPC commented on 15 Feb 2020 Member (@) -+

@faern how about closing this PR and reopening it once the parking lot issues are settled? Would probably be easier that
way

@

Jethrogb commented on 16 Feb 2020

Easier for whom? The triage team or people trying to stay abreast of progress on this issue?

(e m d-e-s-o mentioned this pull request on 17 Feb 2020
RwLock: support upgrades and downgrades #69240

Dylan-DPC commented on 18 Feb 2020

Everyone. The author, reviewers, triagists

faern commented on 18 Feb 2020 Contributor Author = () +-+

@Dylan-DPC It's not like | have the time to contribute to this now nor lixely soon. | feel like many of the outstanding
parking_lot issues are partially out of my hands [not related to integrating parking_lot into libstd to begin with.

For me personally it won't really be "easier” if this was closed. But nor would it be harder. Whenever a new PR is opened
again we have to navigate back and fourth between two PR threads, but that is going to be doable. Maybe better than
having a PR open forever that no one centributes towards.

@jethrogb has a point about that people might want to stay up to date with this and not miss when/if it finally starts moving
again. But they can still subscribe to this PR and if 8 new one is opened, someone can just post a comment in this PR
linking to the new one.

w7
0 @ taern closed this on 18 Feb 2020

Dylan-DPC commented on 18 Feb 2020 Member (D) .-+

Yes @faern understandable. But even if kept open and it is ready to be merged, it will increase the number of conflicts this
has with other prs.

shepmaster commented on 19 Feb 2020
a new PR is opened again
You can reopen this one at that time.

1

comex commented on 18 Feb 2020 - edited ~ Member () .-+

Incidentally, on Darwin, pthread mutexes use priority inheritance, while parking_lot dees not intend to implement it. As
long as that's true, switching the default mutex to parking_lot would be a regression in some ways.

eddyb commented on 19 Feb 2020

You can reopen this one at that time.

Note of caution (we should have this somewhere linkable IMO, or GitHub could just make it simpler one their side): always
reopen before pushing to the branch, otherwise GitHub will hide the option to reopen.

However, evenif you pushed, you can still recover by finding the commit the branch was previously on, and force-pushing
that, which will unleck reopening the PR.

w7 v

(e o RalfJung mentioned this pull request on 25 Jun 2020
Feature request: Make Mutex::new/RwLock::new const. #73714

OUT OF ENERGY

LONCLUSTON

LARGE CHANGES PUSH
TRINGS FORWARD
EVEN WREN THEY FALL

DEADLOCK

FATLED ATTEMPT
BECOMED AN OB TACLE

LONCLUSTON

TINY STEPS

Obstacle 1

STABILITY GUARANTEES

Relax promises about condition variable. #/6932 Sl

IRV G bors merged 1 commitinto rust-lang:master from fusion-engineering-forks:condvar-promise (2] on 25 Sep 2020

L) Conversation 9 - Commits 1 Fl Checks 11 Files changed 1 +5-11 EEEE"

Changes from all commits v File filter v Conversationsv Jumpto~ {3+~ 0/1files viewed (&

+- 16 mmmm | library/std/src/sync/condvar.rs (7] (] viewed

Obstacle 2

MOVABLE MUTEXES

Obstacle 2

MOVABLE MUTEXES

H MicrosoftDocs / sdk-api

<> Code 19 Pull requests 36

7/l — An SRW lock cannot be moved or copied.

71 + An SRW lock cannot be moved or copied while in use.

12 712

73+ An SRW lock with no waiting threads is in its initial state and can be moved.

Unbox mutexes and condvars on some platforms #//380

Y e bors merged 12 commits into rust-lang:master from fusion-engineering-forks:unbox-the-mutex [2) on 4 Oct 2020

L) Conversation 16 -O- Commits 12 [Fl Checks ™M Files changed 20

& - m-ou-se commented on 1 Oct 2020 - edited ~ _Member | (@) -

Obstacle 3

NEW 0.5, PRIMITIVES

Use futex-based thread::park/unpark on Linux. #/76919

BB bors merged 8 commits into rust-lang:master from fusion-engineering-forks:thread-parker [5] on 1 Oct 2020

L) Conversation 14 -0- Commits 8 [Fl Checks 11 Files changed 7

&’ - m-ou-se commented on 19 Sep 2020 - edited ~ Member | (9 -+ Reviewers

Add fast WaitOnAddress-based thread parker for Windows. #//618

xRV e bors merged 8 commits into rust-lang:master from fusion-engineering-forks:windows-parker (2] on 14 Dec 2020

€Y Conversation 28 -0 Commits 8 Fl Checks Files changed 5

& ~ m-ou-se commented on 6 Oct 2020 Member | © - Reviewers

Edit

Edit

Open with +~

+276 -112 EEEN

Open with +

+301 -0 EEEEE

i

LONCLUSTON

SMALLER CHUNKS
ARE EASLER 10 CREW

=5

wouwsBARAKA |

PROCESS CHANGES!

MCPS:
MATOR CHANGE PROPOSALS

Library API team

Designing and maintaining the standard library APl and guarding its stability

Members

B Amanieu d'Antras
: E GitHub: Amanieu

David Tolnay
GitHub: dtolnay

Andrew Gallant
GitHub: BurntSushi

Josh Triplett

GitHub: joshtriplett

Mara Bos

GitHub: m-ou-se

Jane Lusby
GitHub: yaahc

Library team

Managing and maintaining the Rust standard library and official rust-

lang crates

Members

Mara Bos

Team leader

Josh Stone

GitHub: cuviper

Jane Lusby
GitHub: yaahc

GitHub: m-ou-se

Amanieu d'Antras

GitHub: Amanieu

Josh Triplett

GitHub: joshtriplett

CONTRIBUTORS

REEP MAKING
SMALL TEPS

TRANK YOU

'+ Looking for more Rust on a pink background? '+ https://twitter.com/m_ou_se 't

https://twitter.com/m_ou_se

