
Deadlocked
Mara Bos

@m_ou_se

I'm going to tell you

a story

Chapter 1
Problems

Mutex

Mutual Exclusion

Lock
&mut Something

Unlock

Lock
&mut Something

Unlock

Implemententing
is hard !

The operating system
provides them !

Linux, Mac, other Unixes

Windows

Linux, Mac, other Unixes
pthread_mutex_t

Windows

Linux, Mac, other Unixes
pthread_mutex_t

(Part of the POSIX standard)

Windows

Linux, Mac, other Unixes
pthread_mutex_t

(Part of the POSIX standard)

Windows

Linux, Mac, other Unixes
pthread_mutex_t

(Part of the POSIX standard)

Windows
Critical Sections

Linux, Mac, other Unixes
pthread_mutex_t

(Part of the POSIX standard)

Windows
Critical Sections

SRW Locks (Slim Read-Write Locks)

So, just wrap them?
struct Mutex(SystemMutex);

And, done?
!

Nope

These were designed
for C

In Rust, objects
can be moved

So we put them on the heap
struct Mutex(Box<SystemMutex>);

inefficient !

no const constructor!

In Rust, 'wrong' usage

must be safe

let m = Mutex::new(123);

let a = m.lock();

 let b = m.lock(); // deadlock!

 ...

 unlock(b);

unlock(a);

let m = Mutex::new(123);

let a = m.lock();

 let b = m.lock(); // deadlock!

 ...

 unlock(b);

unlock(a);

let m = Mutex::new(123);

let a = m.lock();

 let b = m.lock(); // deadlock!

 ...

 unlock(b);

unlock(a);

let m = Mutex::new(123);

let a = m.lock();

 let b = m.lock(); // deadlock!

 ...

 unlock(b);

unlock(a);

let m = Mutex::new(123);

let a = m.lock();

 let b = m.lock(); // deadlock!

 ...

 unlock(b);

unlock(a);

Deadlocking

is safe

let m = Mutex::new(123);

let a = m.lock();

 let b = m.lock(); // maybe no deadlock?

 f(a, b); // undefined behaviour!

!

 drop(b);

drop(a);

let m = Mutex::new(123);

let a = m.lock();

 let b = m.lock(); // maybe no deadlock?

 f(a, b); // undefined behaviour!

!

 drop(b);

drop(a);

let m = Mutex::new(123);

let a = m.lock();

 let b = m.lock(); // maybe no deadlock?

 f(a, b); // undefined behaviour!

!

 drop(b);

drop(a);

let m = Mutex::new(123);

let a = m.lock();

 let b = m.lock(); // maybe no deadlock?

 f(a, b); // undefined behaviour!

!

 drop(b);

drop(a);

In Rust, forgetting things

must be safe

let m = Mutex::new(123);

let a = m.lock();

mem::forget(a); // safe!

drop(m); // dropped, but still locked!

let m = Mutex::new(123);

let a = m.lock();

mem::forget(a); // safe!

drop(m); // dropped, but still locked!

let m = Mutex::new(123);

let a = m.lock();

mem::forget(a); // safe!

drop(m); // dropped, but still locked!

let m = Mutex::new(123);

let a = m.lock();

mem::forget(a); // safe!

drop(m); // dropped, but still locked!

Conclusion

Rust is not C

Fitting a C-shaped peg
into a Rust-shaped hole.!

Chapter 2
A solution?

September 2018

Parking Lot

Mutexes are one byte
and not heap allocated!

Everything is
const-constructible!

Deadlocking and forgetting
is well-defined !

Is this the solution
to everything? ✨

December 2018

December 2018

December 2018

January 2019

February 2019

March 2019

April 2019

May 2019

June 2019
July 2019

...
November 2019

...

What's going on?

It's a huge amount of
new code
(new to std)

futex()?

Undocumented Windows API?

Stability guarantees

Too many things to
discuss at once

January 2020
February 2020

out of energy

Conclusion

Large changes push
things forward

even when they fail

Chapter 3
Stuck

Deadlock

Failed attempt
becomes an obstacle

Context

Conclusion

Chapter 4
Tiny steps

Tiny steps

Obstacle 1

Stability Guarantees

Obstacle 2

Movable Mutexes

Obstacle 2

Movable Mutexes

Obstacle 3

New O.S. primitives

Conclusion

Smaller chunks
are easier to chew

Chapter 5
Moving forward

Process changes?

MCPs:
Major Change Proposals

Contributors

Keep making
small steps

thank you
✨

 Looking for more Rust on a pink background?
✨

 https://twitter.com/m_ou_se
✨

https://twitter.com/m_ou_se

